

We Put Science To Work

Contaminant Release from Cementitious Materials: Savannah River Practice

Greg Flach July 14, 2009 Salt Lake City

Performance Assessment Community of Practice Technical Exchange Meeting

Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal

Overview of Typical Savannah River PA Practice

- Chemical equilibrium batch analysis of bulk dissolved species
 and solid minerals, e.g. The GeoChemist's Workbench
- Key pH and Eh transitions defined in terms of pore volumes flushed
- Timing of transitions defined by flow simulation
- System-level transport simulation using simple Kd / solubility
- Kd and solubility values defined by pH / Eh regime, e.g.
 - Region II versus III in parlance of Bradbury and Sarott (1995)
 - Oxidizing versus reducing conditions

Saltstone Disposal Facility Example

- From 2009 Saltstone PA (draft)
- Contaminant release, except Tc-99
 - from Saltstone grout
 - through vault concrete
- Technetium release
 - shrinking core model of slag reduction capacity

Saltstone Disposal Facility

 Salt liquid waste mixed with dry grout to form "Saltstone"

(CONCRETE)

SRNL

22

Ň

 Blast furnace slag in Saltstone grout and vault concrete to create reducing conditions

Saltstone Formulation

Ingredient	Quantity (wt%)
Salt solution (average 28% by weight salts)	47
Blast furnace slag (grade 100 or 120)	25
Fly ash (Class F)	25
Cement (ASTM C 150 Type II) or lime	3

Concrete Formulation - Future Disposal Cells

Ingredient	Quantity (Ibs/cu.vd)	
Type V cement (Lehigh T-V #2 · ASTM C 150)	213	
Grade 100 Blast furnace slag (Holoim Grade 100 Slag: ASTM C 980)	215	
	204	
Silica Fume (W. R. Grace Silica Fume; ASTM C 1240)	47.3	
Type F Fly ash (SEFA Class "F" Fly Ash; ASTM C 618)	165.7	
sand (Rinker Aggregates Company - Augusta Sand - Natural Washed	911	
Sand), ASTIN C 33)	1950	
Granite; ASTM C 33)	1050	
Water (maximum)	269.8	
Water (maximum; gal/ cu yd)	32.3	
Maximum water to cementitious material ratio	0.38	
Grace WRDA 35 (oz/cwt c+p)	5	
Grace Darex II (oz/cwt c+p)	0.4 to 0.5	
Grace Adva 380 (oz/cwt c+p)	3 to 4	
Minimum compressive strength of at 28 days	5000 psig	
Slump range/target of before Super-P	1 – 3 inches / 2 inches	
Slump range/target of after Super-P	6 – 8 inches / 7 inches	

Approach (Miles Denham, SRNL):

- Calculate chemical analysis of saltstone from cementitious components
- Calculate normative mineralogy from chemical analysis and measured reducing capacity
- Use measured porosity
- Use various influent water chemistries

SRNL

Influent chemistry cases:

- Case 1 groundwater
 - groundwater has no contact with or is unaffected by vault concrete
- Case 2 groundwater equilibrated with calcite
 - groundwater flows through highly aged (Bradbury and Sarott Region III) vault concrete
- Case 3 groundwater equilibrated with CSH
 - Groundwater flows through moderately aged (Bradbury and Sarott Region II) vault concrete

pH results:

Eh results:

10

Pore volumes summary:

	Eh	Transition	рН	Transition
Case	Pore Volume (unitless)	Value Range	Pore Volume (unitless)	Value Range
Saltstone/fluid=GW (no fluid contact with vault)	2734	-0.45 to +0.66	2274	11.0 to 9.5
Saltstone/fluid=GW+calcite (vault oxidized Region III)	2775	-0.45 to +0.61	2558	11.0 to 10.3
Saltstone/fluid=CW+CSH (vault oxidized (Region II)	2806	-0.45 to +0.56	10422 (extrapolated)	11.0 to ?
Vault 2/fluid=GW	3230	-0.46 to +0.57	4206 (extrapolated)	11.0 to ?

Contaminant Release - Tc-99

Shrinking core model with three species:

- Slag (solid phase)
- Oxygen (liquid phase)
- Tc-99 (liquid phase)

Reduction and oxidation capacities:

- Saltstone grout = 0.82 meq/g
- Vault concrete = 0.24 meq/g
- Dissolved oxygen concentration = 1.06 meq/L

Contaminant Release - Tc-99

Tc-99 mobility controlled by pseudo-Kd function:

SRNL-STI-2009-00449

14

Contaminant Release - Tc-99

Shrinking core model:

Reduction capacity at 20k years

SRNL-STI-2009-00449

15

Opportunities for Improvement?

